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Abstract: 

Industrial CAD designer at various stages 
of product design come across faceted 
definition of solids due to CAD import from 
STL, DXF and VRML files. Most of the 
times the data provided by the clients or 
third party is sufficient for the referencing 
purposes. This data cannot be edited or 
processed to perform further geometric 
operations essential for downward 
application. This is main hindering block in 
main stream CAD modeling software. We 
are addressing this problem through 
faceted Boolean operations for such 
specific cases. 

In this paper we present an algorithm to 
perform interactive Boolean operations on 
free-from faceted solids. We are 
developing fast surface-surface 
intersection algorithm for triangulated 
surfaces. In next stage different 
combinations of possible resultant solids 
produce from intersection operations would 
be displayed to user for desire Boolean 
selection. This enables us to add, subtract 
and intersect complex solids at interactive 
rates.  

    The result of an boolean operation is a 
set of triangles that determines the 
boundary of the intersection between two 
meshes. These triangles could be not one 
of the original ones. To calculate this new 
ones, this module search pairs of triangles 
that intersect and lie on the boundary. The 
intersection determines how to subdivide 
these two triangles to obtains the needed 
ones.  
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1. Introduction 
Triangulated Faceted geometries are 
surface patches which are defined by 
points and triangles. These geometries are 
formed by tessellation of well defined 
surfaces like NURBS or B Spline surfaces. 
These are mainly used for visualization and 
rendering purposes. Due to there 
tessellated nature it is hard to find out there 
intersections. Also it is difficult to determine 
whether the point in space is inside the 
volume bounded by these surfaces, on the 
surfaces or outside the bounding volume. 
The above processes are intensively used 
for Boolean operations performed on solid 
bodies. Fast intersection and in/out 
searches are required in order to perform 
various solid parts generations.  
 
Present work aims at developing a CAD 
functionality which can generate results by 
performing Boolean operations on faceted 
geometries. 
 
2. Boolean Operations 
The basic Boolean operations are 
analogous to mathematical set operations: 
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        Figure 2-1 Basic Boolean operations 

  

 
2.1. Global Booleans  

A global Boolean involves comparing all 
face pairs from the target and tool bodies.  

Global Booleans are performed which 
requires one target body, one or more tool 
bodies and an options structure. If more 
than one tool body is supplied, the union of 
overlapping tools is computed first and 
then the Boolean between the target and 
the tools is performed. 

2.2. Local Booleans  

A local Boolean involves comparing 
selected face pairs in the target and tool 
bodies. This form of Boolean operation is 
quicker than a global Boolean but does not 
guarantee topological consistency on the 
resulting bodies.  

 

2.3. Boundary regions  

In order to perform Boolean operations, 
edges are imprinted on the target and tool 
to denote the intersecting parts of the two 
bodies. These imprinted edges divide the 
boundaries of the bodies into boundary 
regions. 

Suppose the bodies shown are used to 
perform a global and local Boolean 
respectively.  

  

 

Figure 2.3.1 Bodies used in a simple union 

For global Booleans, all the boundary 
regions of the tool bodies lie either 
completely inside or completely outside of 
the target body, as shown in Fig. 

  

 

Fig. Boundary regions for global Booleans 

 

 

 

Figure 2.3.2 Regions after the boolean 

For local Booleans, because not all faces 
of both bodies are used to compute the 
imprinted edges, boundary regions of the 
tool body are classified as inside if they are 
locally inside the target body near a loop of 
imprinted edges, and are classified as 
outside if they are locally outside near the 
loop of imprinted edges, as shown in Fig. 
Options are provided to select which 
regions are to be excluded or included in a 
local Boolean. 

  

 

Fig. 2.3.3 Boundary regions for local 
Booleans 

3. Imprinting 

In our algorithm imprinting takes place by 
method explained below: 

 The input faceted geometries are the set 
of triangles. If 1st surface has M number of 
triangles and second surface has N 
triangles, each triangle in first set will try to 
find whether there is any intersection 



between it and the second surface. This 
could be found out by considering each 
triangle of 1st surface as a set of 3 
segments. These segments are actually 
sides of the 1st triangle. These sides will be 
sent as rays to the 2nd surface and the 
intersecting points are calculated. Different 
checks are applied to see the exact 
position of the intersecting point on the 
second surface. In this way M X N 
iterations are performed. 

3.1. Ray Triangle intersection algorithm: 

 

A plane, in its vector form, is specified by a 
based point B and its normal vector N. For 
an arbitrary point, or position vector, X on 
the plane, the direction vector from the 
base point B to X, X-B, must be 
perpendicular to the normal vector N. 
Therefore, we have (X-B).N must be zero. 
From (X-B).N=0, we have the equation of a 
plane specified with a base point and its 
normal vector:  

X.N- B.N = 0  

Given the vector notation of lines and 
planes, it is very easy to compute the 
intersection point of a line and a plane. Let 
the given line be A+td. Let the plane be 
defined with a base point B and its normal 
vector n. Then, this plane has equation 
X.n=B.n. If the line intersects the plane, 
there must be a value of t such that the 

corresponding point lies on the plane. That 
is, there must be a t such that the point 
corresponding to this t would satisfy the 
plane equation. Since a point on the line is 
A+td, plugging A+td into the plane equation 
yields  

(A+td).N - B.N = 0  

Rearranging the terms and solving for t 
yields  

t = (B-A).N / d.N  

Therefore, plugging this t into the line 
equation yields the intersection point.  

In the above, if d.N is zero, t cannot be 
solved and consequently no intersection 
point exists. The meaning of d.N = 0 is that 
d and n are perpendicular to each other. 
Since n is the normal vector of a plane and 
d is perpendicular to n, d must be parallel 
to the plane. If the line is parallel to the 
plane, no intersection point exists.   

 

In some cases it may happen that the two 
triangles are not intersecting at all, here 
parameter t determines whether to 
consider the point of intersection or not. 
Point in polygon search methods are used 
to determine whether the point is in inside 
or outside of the concerned triangles. 



 

 

After performing the intersection, points on 
surfaces are displayed which form actual 
boundaries, for face, which separates the 
surfaces from each other. The faces of the 
target and the tool bodies are intersected 
with each other to produce new edges 
where they meet. These edges divide the 
faces of each body into facesets which are 
either inside, outside, or on the boundary 
of, the other bodies. 

 

 

4. Gluing 

The resulting sets of faces are joined 
together into a single intermediate body. 
Triangulation is generated on these 
boundary points to redefine the separated 
facesets.   

5. Selection 

The parts of the model which are to be kept 
or rejected are selected, according to the 
type of Boolean being performed and the 
options supplied, using information gained 
in the earlier phases. Selection could be 
done by selecting a point, face, or an edge 
of triangle for a particular region.  

We are planning to save these operated 
parts in separate STL files. 

6. Implementation Details: 

The code has been written using ANSI C[6] 
on Linux platform. CAD translator 
developed for VRML read all important 
geometric entities. Non triangulated entities 
are converted to the triangulated surfaces. 

 For implementation of imprinting 
algorithm, geometric tool library is created 
to support the intersection algorithm. It 
consists of vector algebraic operations 
such as vector cross product, subtraction, 
dot product, vector normal and unit vector. 
Code uses the parametric as well as 
implicit form of equations for various 
geometric entities like segments, planes, 
curves, triangles etc. To find the point of 
intersection and gluing operations are time 
consuming and tedious. Therefore we 
make use of spatial search method to 
increase to increase the speed of ray 
tracing algorithm in surface intersection. 
For results display  purposes GNUPlot, Qt, 
OpenGL is used. 
 
Spatial Searching Framework 
 Sequential searching of geometry is 
not the fastest method. Instead, division of 
the whole geometry domain into a grid or 



voxels helps search faster as the search 
gets 'localized'. Voxel method of searching 
has its own limitations when it comes to 
non-uniform distribution of geometry 
objects in a domain. The quadtree/octree 
approach of domain division comes in 
handy to overcome this limitation of voxels 
as the division of the domain (and hence 
the problem of searching) adapts itself to 
local complexity of the problem. 
 
Principle: 
The grid approach to searching sub-divides 
the domain into rows and columns of a 
specified size (can be different in x, y and z 
directions) and marks individual voxels 
(cells) thus formed with the geometric 
objects that lie within (this local domain). 
The original problem, therefore, gets sub-
divided into smaller problems equal in 
number to the number of voxels formed. 
When a search query is fired, the 
concerned voxel (the concerned sub-
problem) is first identified which, if 
searched through, will surely obtain a 
solution. Only those geometric objects that 
have been marked earlier as lying in this 
voxel are searched and the solution 
obtained. Thus, the problem of searching 
all geometric objects within the entire 
domain gets reduced to searching only 
those objects that lie within the concerned 
local sub-domain – which is obviously 
faster. 
 
 However, this search may not be as 
fast if the distribution of objects in the 
original domain is non-uniform. This 
happens since the number of objects lying 
within a voxel (cell occupancy) varies 
across the grid with some voxels having 
very high occupancy and others having 
very low (if the query requires searching a 
voxel with high occupancy, the search is 
not sufficiently fast). 
 
 The quadtree approach starts out 
with dividing the domain into four (octree 
approach divides into eight in 3D) sub-

domains. Only that sub-domain is further 
sub-divided into four, which has higher-
than-desired cell occupancy, leaving out 
the subdivision of those sub-domains that 
need not be redundantly sub-divided 
further as they already have optimum 
occupancy. With each subdivision the 
quadtree/octree is said to have penetrated 
a level deeper. Very deep trees can render 
the search slower. Therefore, each 
subdivision decision takes into account not 
only the desired cell occupancy, but also 
the tree depth and strikes a   balance 
between the two factors. Thus, more 
uniform cell occupancy is achieved 
although the distribution of geometry 
objects across the full domain may not be 
uniform. The quadtree division, when 
complete, captures the complexity of the 
problem in a way. 
 
References: 
[1] O’Rourke, J., “Computational 

Geometry in C”, Cambridge University 
Press,2nd Ed 2001. 

[2] Farin, G.E., “Curves and Surfaces in 
CAGD”, Academic Press Inc., 4th 
Ed.,199 

[3] Hamies, R., Aftosmis, M., “On 
Generation High Quality Water-Tight 
Triangulation directly fro CAD”, 
“Numerical Grid Generation in 
Computational Field Simulations”, The 
International Society of Grid 
Generation, 2002, pp. 27-46. 

[4] Ritche, Kernigham, “The C 
Programming Language”, Princeton-
Hall Inc., 2nd Ed, 2000. 

[5] Schneider, J.P., Eberly, H.D., 
“Geometric Tools for Computer 
Graphic”, Morgan Kauffmann, 2003. 

[6] Roger, Adams, “Mathematical 
Computation for Computer Graphics”, 
2nd Ed., 2001. 

[7] Mezentsev, A., Woehler, T., “Methods 
and Algorithm of Automated CAD 
Repair for Incremental Surface 
Meshing”, In Proceedings, 10th 
International Meshing Roundtable, 



Sandia National Laboraories, 2001, 
pp.353 – 362. 

[8]  3D Systems,Inc., CA, 
Stereolithography  Interface  

        Specification (STL), 
http://www.3dsystems.com 
[9]  AutoCAD Reference Manual, 

AutoDesk, Inc., Data Exchange file 
format (DXF), 
http://www.autodesk.com. 

[10] IITZeus Preprocessor, 
http://www.aero.iitb.ac.in/~iitzeus   

 


